DID前沿-交叠DID 我要报名 ¥1200
Peixun.net > 现场班 > 计量实证分析 > DID前沿-交叠DID

DID前沿-交叠DID

满意程度:     课程系列:A4
课时:0 分钟| 359人学习 分享 收藏
DID-2022新课 第二次更新
对近3年DID领域中出现的新方法进行系统掌握,能够对其主要命令,主要原理,主要应用场景和结果的解读进行掌握,达到运用新方法进行论文写作的目标。
含10篇参考文献

上课信息

上课时间: 2022年10月7日(一天)
9:00-12:00;14:00-17:00;答疑

上课地点: 远程直播, 提供全程录播回放

DID前沿-交叠DID

一、 交叠DID应用建议

1 如何在多期与处理时间变化时,选择合适的DID估计量?

2 如何处理非平行趋势的情况?

3 如何在少量处理单位情况下进行科学抽样?

4 交叠DID的图示法

5 交叠DID新命令一览

6 文献解读

[1] De Chaisemartin C, D'Haultfoeuille X. Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: A survey[R]. National Bureau of Economic Research, 2022.

heterogeneous treatment effects: A survey[R]. National Bureau of Economic Research, 2022.

[2] 刘冲,沙学康,张妍.交错双重差分:处理效应异质性与估计方法选择[J].数量经济技术经济研究:1-28.

二、 交叠DID分解

1 TWFE在交叠DID估计中的偏误分解

2 交叠DID的Bacon分解与Stata实现

3 文献解读

[1] Goodman-Bacon, Andrew, “Difference-in-differences with variation in treatment timing,”

Journal of Econometrics, 2021, 225 (2), 254–277

三、 三类交叠DID的异质稳健估计

(一) 组别-时期平均处理效应

1 De Chaisemartin和 d'Haultfœuille(2020)提出的估计量(did_multiplegt)

2 Sun 和 Abraham(2021)提出的估计量(eventstudyinteract)

3 Callaway 和 Sant’Anna(2021)提出的估计量(csdid)

4 文献解读

[1] De Chaisemartin C, d'Haultfoeuille X. Two-way fixed effects estimators with heterogeneous treatment effects[J]. American Economic Review, 2020, 110(9): 2964-96.

effects[J]. American Economic Review, 2020, 110(9): 2964-96.

[2] Sun L, Abraham S. Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[J]. Journal of Econometrics, 2021, 225(2): 175-199.

treatment effects[J]. Journal of Econometrics, 2021, 225(2): 175-199.

[3] Callaway B, Sant’Anna P H C. Difference-in-differences with multiple time periods[J]. Journal of Econometrics, 2021, 225(2): 200-230.

Econometrics, 2021, 225(2): 200-230.

(二) 插补估计量

1 Borusyak et al.(2021)提出的估计量(did_imputation)

2 Gardner(2021)提出的估计量(did2s)

3 文献解读

[1] Borusyak K, Jaravel X, Spiess J. Revisiting event study designs: Robust and efficient estimation[J].

arXiv preprint arXiv:2108.12419, 2021.

[2] Gardner J. Two-stage differences in differences[J]. Working paper, 2021.

(三) 堆叠回归估计量

1 Cengiz et al.(2019)提出的估计量(stackedev)

2 文献解读

[1] Cengiz D, Dube A, Lindner A, et al. The effect of minimum wages on low-wage jobs[J]. The Quarterly Journal of Economics, 2019, 134(3): 1405-1454.

Journal of Economics, 2019, 134(3): 1405-1454.

四、 DID与合成控制的结合:合成DID

1 合成DID的原理与应用领域

2 合成DID的命令实现

3 文献解读

[1] Arkhangelsky D, Athey S, Hirshberg D A, et al. Synthetic difference-in-differences[J]. American Economic Review, 2021, 111(12): 4088-4118.

Economic Review, 2021, 111(12): 4088-4118.


报名时间 2022-08-29 00:00 至 2022-10-07 00:00
培训时间 2022年10月7日(一天)
培训地点 远程直播, 提供全程录播回放
培训费用 1200元/ 1050元(学生优惠价仅限全日制本科及硕士在读)
授课安排 9:00-12:00;14:00-17:00;答疑


DID前沿专题 2022new


课程导语:

      近3年来,针对经典双向固定效应(TWFE)模型在处理效应估计中可能存在错误估计的问题,出现了一系列不同DID方法的创新来试图纠正估计过程中一个或另外一个方面的问题,其中以交叠情况下DID方法为其中最有代表性,这些方法或是在平行趋势检验,或是在不同个体权重存在异质性,或是包含协变量,运用了包括自举、逆概率权重、匹配或Imputations等各类方法。但针对这些新方法,在不同运用场景下,如何进行选择,还是一个值得进一步讨论的话题。

本次课程主要就近年DID这个十分活跃领域出现的新方法进行学习。

主要教学对象为已有一定计量经济学基础,有初级DID应用的学员。

教学目标为了使学员对近3DID领域中出现的新方法进行系统掌握,能够对其主要命令,主要原理,主要应用场景和结果的解读进行掌握,达到运用新方法进行论文写作的目标。


本次更新:

(1)增加了交叠DID的图形展示, 更容易对交叠DID的具体类型进行直观展示,以便于确定合理的模型形式;

(2)结合国内外的文献,对交叠DID的估计方法进行系统梳理,重点讲授当前主流文献中引用率较高的三大类共6种交叠DID的估计方法,以便于根据自己数据和事件的主要形式,选择合适的估计方法;

(3)增加了中文最新文献,以便于了解国内对交叠DID研究的最新进展。


课程内容:

一、交叠DID应用建议

1. 如何在多期与处理时间变化时,选择合适的DID估计量?

2. 如何处理非平行趋势的情况?

3. 如何在少量处理单位情况下进行科学抽样?

4. 交叠DID的图示法

5. 交叠DID新命令一览

6. 文献解读

[1] De Chaisemartin C,D'Haultfoeuille X. Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: A survey[R]. National Bureau of Economic Research, 2022.

[2] 刘冲,沙学康,张妍.交错双重差分:处理效应异质性与估计方法选择[J].数量经济技术经济研究:1-28.


二、交叠DID分解

1. TWFE在交叠DID估计中的偏误分解

2. 交叠DID的Bacon分解与Stata实现

3. 文献解读

[1] Goodman-Bacon, Andrew, “Difference-in-differenceswith variation in treatment timing,” Journal of Econometrics, 2021, 225 (2),254–277.


三、三类交叠DID的异质稳健估计

(一)组别-时期平均处理效应

1. DeChaisemartin和 d'Haultfœuille (2020) 提出的估计量 (did_multiplegt)

2. Sun 和Abraham (2021) 提出的估计量 (event study interact)

3. Callaway 和 Sant’Anna (2021) 提出的估计量 (csdid)

4. 文献解读

[1] De Chaisemartin C, d'Haultfoeuille X. Two-way fixed effects estimators with heterogeneous treatment effects[J]. American Economic Review, 2020, 110(9):2964-96.

[2] Sun L, AbrahamS. Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[J]. Journal of Econometrics, 2021, 225(2): 175-199.

[3] Callaway B, Sant’Anna P H C.Difference-in-differences with multiple time periods[J]. Journal of Econometrics,2021, 225(2): 200-230.


(二)插补估计量

1. Borusyaket al.(2021)提出的估计量 (did_imputation)

2. Gardner(2021)提出的估计量(did2s)

3. 文献解读

[1] Borusyak K,Jaravel X, Spiess J. Revisiting event study designs: Robust and efficient estimation[J]. arXiv preprint arXiv:2108.12419, 2021.

[2] Gardner J. Two-stage differences in differences[J]. Working paper, 2021.


(三)   堆叠回归估计量

1. Cengizet al.(2019)提出的估计量(stackedev)

2. 文献解读

[1] Cengiz D, Dube A, Lindner A, et al. Theeffect of minimum wages on low-wage jobs[J]. The Quarterly Journal of Economics,2019, 134(3): 1405-1454.


四、DID与合成控制的结合:合成DID

1. 合成DID的原理与应用领域

2. 合成DID的命令实现

3. 文献解读

[1] Arkhangelsky D, Athey S, Hirshberg D A, et al.Synthetic difference-in-differences[J]. American Economic Review, 2021,111(12): 4088-4118.


优惠:

  • 1. 学术培训老学员9折优惠;

  • 2. 同一单位三人以上报名9折优惠;

  • PS:折扣优惠与学生价均不叠加。


在线咨询:

尹老师

电话:13321178792

QQ:42884447

WeChat:JGxueshu

课程订阅

讲师介绍


Peixun.net

DID前沿-交叠DID

请认真填写以下信息,方便为您服务
  • 姓名:
  • 电话:
  • 邮箱:
  • 备注:
  • 邀请码:
  • 您还可以选择 登录 或者 注册 更方便您管理课程。

Peixun.net

您关于:

DID前沿-交叠DID

的报名信息已经提交成功。

去购物车结算
您可以选择 登录 或者 注册 更方便您管理课程。
回头再说

邮件已发送!

已成功发送邮件到您注册的邮箱 请前往查询并点击链接重置密码

有待解答的问题

3 名学员对您的课程提问,需要您作出回答。 现在就去