基本有用的计量经济学——因果推断 我要报名 ¥5000
Peixun.net > 现场班 > 计量实证分析 > 基本有用的计量经济学——因果推断

基本有用的计量经济学——因果推断

满意程度:     课程系列:A5
课时:0 分钟| 181人学习 分享 收藏
※2023年新课纲
※明确经济学实证研究的基本步骤
※讲述如何从观测到的相关性中推断出因果效应

上课信息

上课时间: 2023年7月录播,随报随学
24小时

上课地点: 在线学习,提供全部资料和主讲老师答疑

基本有用的计量经济学——因果推断

基本有用的计量经济学——因果推断| 2023暑期NEW

第1讲 统计推断

•线性回归、饱和模型、二元选择模型、方差估计

•带惩罚项的线性回归:偏差—方差权衡、交叉验证法、自助法(bootstrap)、岭回归、Lasso

•非参数回归:非参数密度估计、Nadaraya-Watson估计量、局部线性回归估计量(LLR)

第2讲 潜在结果框架

•RCM (Rubin Causal Model)

•潜在结果

•分配机制(treatment assignment)

•因果效应参数(causal estimand)

•Lord悖论

•因果识别

•回归和因果识别

第3讲 随机化实验

•随机化实验的作用

•随机化实验为什么是黄金标准?

•随机化实验的分析

•Design-based和sampling-based方差

案例:

班级规模与学习成绩(Krueger, 1999),种族与就业歧视(Bertrand and Mullainathan, 2004)、

竞选中名字在选票中的位置优势(Ho and Imai, 2006)、媒体的影响(Chen and Yang, 2019)

第4讲 因果图

•三种基本结构

•后门标准

•混杂偏差和样本选择偏差

•什么是好的控制变量和坏的控制变量

•*前门标准

•*do运算

第5讲 非混杂性条件下的因果效应估计

•匹配、倾向指数匹配(PSM, Rosenbaum and Rubin, 1983; Abadie and Imbens, 2006)

•逆概率加权(Inverse probability weighting, IPW)

•回归调整(regression adjustment)

•双重稳健估计(double robust estimator)

案例:

培训的效果(Dehejia and Wahba, 1999)、

精英大学的作用(Dale and Kreuger, 2002)

第6讲 工具变量法

•工具变量法的起源和基本思想

•工具变量法的基本识别条件

•如何选择工具变量,如何讨论工具变量的外生性条件?

•工具变量法的选择和说服审稿人的办法

•异质性因果效应下的工具变量法——LATE(Imbens and Angrist, 1994: Angrist, Imbens and Rubin, 1996)

•工具变量法和非依从的随机化实验(noncompliance RE)

•基于选择的工具变量法——Heckman两步法

•*未观测因素为基础的选择MTE——边际干预效应框架(Heckman and Vytlacil, 1999;2005)

案例:

出生季度和教育回报(Angrist and Krueger, 1991),

参军与收入(Angrist,1990)、家庭规模和父母劳动供给(Angrist and Lavy, 1998)、

美国的教育回报(Carneiro et al., 2011)、

全民儿童照护服务的收益(Cornelissen, Dustmann and Schonbrg, 2018)。

第7讲 固定效应方法

•随机效应模型

•固定效应模型

•Hausman检验

•固定效应是什么

•组内回归(within regression)和虚拟变量回归(LSDV)

•Stata命令reg、xtreg、areg、reghdfe的关系

案例:双胞胎数据估计中国教育回报(Li, Liu and Zhang, 2012)

第8讲 经典双重差分法

•共同/平行趋势假设(Parallel/Common Trend Assumption)、无预期假设(no anticipation assumption)、无溢出效应假设(no spillover effects assumption)、共同区间假设(overlap assumption)

•经典DID的因果识别

•经典DID的参数估计:回归方法、PSM-DID(Heckman et al. 1997, 1998)、逆概率加权估计量(Abadie, 2005)、双重稳健估计量(Sant’Anna and Zhao, 2020)

•如何在回归模型中引入不时变的协变量Xi和时变协变量Xit?

案列:

移民冲击和工资(Card, 1990)、最低工资调整和就业(Card and Krueger, 1994)、

911事件对美国办公楼的影响(Abadie and Dermisi, 2008)、大学扩招和大学生失业(邢春冰和李实,2011)。

第9 讲 多期单一政策DID

•基本识别条件:平行趋势假设、无预期假设和无溢出效应假设的重新表述。

•平行趋势假设检验和动态模型构造(事件研究法设计)

•以个体出生年份(cohort)构成的DID,有时也称为cohort DID,并不是一种新的设计

案例:

茶叶价格和消失的女性(Qian, 2008)、土豆和人口及城市化(Nunn and Qian, 2011)。

第10 讲 DID-IV设计

•DID和IV的结合:不满足平行趋势时的新设计

•基本识别条件、因果识别过程

•三重差分法(DDD):一种特殊的工具变量法

•基本识别条件、因果识别过程

案例:

印尼建校项目对教育回报的影响(Duflo, 2001)

强制福利对劳动力市场的影响(Gruber, 1994)

第11讲 交错DID(staggered DID)

•基本识别条件的讨论

•TWFE估计量在估计什么(Goodman-Bacon, 2021; de Chaisemartin and D'Haultfoeuille, 2020)

 Goodman-Bacon分解

•事件研究法存在的偏差(Sun and Abraham, 2021)

•如果正确的估计因果效应:

 Callaway and Santa’Anna(2021)非参数估计量

 Wooldridge(2021)回归估计量

案例:大而坏的银行:放松管制与收入分配(Beck et al., 2010; Baker et al., 2022)

第12讲 合成控制法

•缺失值填补(Borusyak et al., 2021; Liu et al., 2021)

•合成控制法(Abadie et al., 2010)

•合成双重差分法(Arkhangelsky et al., 2021)

•广义合成控制法(Xu, 2017)

案例:加州控烟法案的效果(Abadie et al., 2010)

德国统计的经济影响(Abadie et al., 2015)

第13讲 断点回归设计

•精确断点回归设计:局部随机化假设、连续性假设

•模糊断点回归设计:工具变量法

•弯折断点回归设计:导数上的断点

案例:美国政党的在位优势(Lee,2008)、

空气污染和寿命(Chen et al., 2013;Ebenstein et al., 2017)、

学区房的价值(Black, 1999)、户口的价值(Chen et al., 2019)。


报名时间 2023-05-22 10:42 至 2023-07-27 10:42
培训时间 2023年7月录播,随报随学
培训地点 在线学习,提供全部资料和主讲老师答疑
培训费用 5000元/ 4400元(学生优惠价仅限全日制本科及硕士在读)
授课安排 24小时


基本有用的计量经济学——因果推断

2023NEW


探讨因果关系是经济学实证研究的主要目的,因果关系一般是无法观测到的,我们只能观测到相关性,如何从观测到的相关性中推断出因果效应,是这门课中的主要内容。


计量经济学包括两块内容:统计推断(参数估计和假设检验)和因果推断。然而,现在有很多人搞不清楚两者的区别,在进行实证研究的时候,不知道参数识别(统计推断)和因果识别(因果推断)的区别,两块内容混淆在一起,就无法把相关性参数和因果性参数区别开来。


现有很多计量教材集中于统计推断,对因果推断很少涉及,包括安神(Angrist and Pischke, 2009)的《基本无害的计量经济学》也没有显性的讲出来什么是因果识别,如何构造识别策略。本课程将详细的对此进行区分,明确目标参数、识别策略和估计方法(OLS,MLE,GMM)的区别。



不讲潜在结果框架或Rubin因果模型(RCM),就无法说清楚因果识别。


不讲图因果模型或Pearl因果模型(PCM),就无法清楚的构建因果识别策略。


不讲随机化实验,就无法讲解清楚实证中的因果效应估计。



课程目的:

让学员明确经济学实证研究的基本步骤:首先,定义清楚目标参数(causal estimand),其次,构造识别策略,建立统计参数(statistical estimand),最后,构造估计量(estimator),得到目标参数的估计值。由目标参数到统计参数,由观测不到的因果效应转变化可以观测到的统计参数的过程,即因果推断。利用样本信息构造估计量,估计统计参数,即统计推断。


课程特色:

l 进行了全面更新,对统计推断和因果推断进行了区分,对因果推断和因果识别进行了明确定义,并将估计方法和因果推断区分开来,吸收了最近几年各类方法的最新发展,并在统一的框架内进行详细解构,让读者更容易掌握因果推断的基本内容。


l 讲清楚因果效应参数(causal estimands)、统计参数(statistical estimands)和统计量(estimators)的区别。实证分析的第一步就是明确自己想回答的问题,定义清楚因果效应参数或目标参数(target parameters),才能根据研究问题的背景信息和先验知识,构造识别策略。


l 因果推断的关键在于分配机制(assignment mechanism),识别策略主要是对分配机制的描述,通过引入合理的识别条件,描述可能的分配机制,才能识别出因果效应。理解了分配机制,也就理解了因果推断的核心内容,对于匹配、IV、DID(SC)、RDD等具体的方法也就更容易理解。


l 在实证分析中,原因变量(或核心解释变量)和控制变量的地位是不同的,如何才能合理的选择控制变量?控制变量越多越好吗?选择控制变量的基本原则是什么?


l 如何选择工具变量?如何思考工具变量的独立性和排除性假设?如何合理化(justify)你的工具变量?


l 面板数据中固定效应是什么,起着什么作用,如何加固定效应?


l 估计方法和目标参数之间是什么关系,关于交错DID(staggered DID)的最新发展,充分反映了这一矛盾。OLS、TSLS、TWFE作为经济学家常用的估计方法,很多时候并不能给研究者想要的目标参数,并不能回答作者想回答的问题。如何解决?



本课程学员可以学到:

• 统计推断的基本内容,线性回归只是一种参数估计方法,MLE/GMM也是参数估计方法?

• OLS在估计什么?和因果效应参数是什么关系?

• 什么是因果识别?因果识别和参数识别的区别?

• 如何进行因果推断,如何引入识别条件?

• 如何选择控制变量,基本的原则是什么?

• 什么是固定效应,如何加固定效应?

• 如果选择工具变量,如何说明工具变量的有效性,应该如何思考独立性和排除性假设?

• 如何利用自然实验,包括工具变量、双重差分、断点回归,来识别因果效应?

• 在多期交错政策(staggered)下,双向固定效应方法(TWFE)在估计什么,Goodman-Bacon分解如何判断TWFE估计量的合理性。

• 在交错政策下,事件研究法为何不能用,如果运用正确的方法,包括Callawayand Sant’Anna (2021)的非参数估计量和Wooldridge(2021)的回归估计量。



授课嘉宾:


赵西亮 教授 现任厦门大学经济学院和王亚南经济研究院经济学教授、博士生导师。


清华大学经济管理学院数量经济学专业博士,美国康奈尔大学和芝加哥大学访问学者,加拿大西安大略大学经济系博士后,长期从事中国经济和应用计量经济学研究,编著教材《基本有用的计量经济学》,被京东评为“十大构思细腻的大学教材”之一。


在《经济研究》、《经济学》(季刊)、《数量经济技术经济研究》、《WorldEconomy》等国内外重要期刊发表论文十余篇。China Economic Review, 《经济研究》、《管理世界》、《经济学(季刊)》、《世界经济》等国内外重要期刊匿名审稿人。



基本内容:


第1讲 统计推断

• 线性回归、饱和模型、二元选择模型、方差估计

• 带惩罚项的线性回归:偏差—方差权衡、交叉验证法、自助法(bootstrap)、岭回归、Lasso

• 非参数回归:非参数密度估计、Nadaraya-Watson估计量、局部线性回归估计量(LLR)


第2讲 潜在结果框架

• RCM (Rubin Causal Model)

• 潜在结果

• 分配机制(treatment assignment)

• 因果效应参数(causal estimand)

• Lord悖论

• 因果识别

• 回归和因果识别



第3讲 随机化实验

• 随机化实验的作用

• 随机化实验为什么是黄金标准?

• 随机化实验的分析

• Design-based和sampling-based方差

案例:

班级规模与学习成绩(Krueger, 1999),

种族与就业歧视(Bertrand and Mullainathan, 2004)、

竞选中名字在选票中的位置优势(Ho and Imai, 2006)、

媒体的影响(Chen and Yang, 2019)



第4讲 因果图

• 三种基本结构

•  后门标准

• 混杂偏差和样本选择偏差

• 什么是好的控制变量和坏的控制变量

•  *前门标准

•  *do运算



第5讲 非混杂性条件下的因果效应估计

最基本的识别条件是非混杂性(unconfoundedness),也称为条件独立性假设(CIA, Angrist and Pischke 2009),或根据观测变量进行的选择(selectionon the observables)或可忽略性(ignorablity),是最基础的分配机制。这类策略的关键是通过(匹配)设计,模拟随机化实验。

• 匹配、倾向指数匹配(PSM, Rosenbaum and Rubin, 1983; Abadie and Imbens,2006)

• 逆概率加权(Inverse probability weighting, IPW)

• 回归调整(regression adjustment)

• 双重稳健估计(double robust estimator)

案例:

培训的效果(Dehejia and Wahba, 1999)、

精英大学的作用(Dale and Kreuger, 2002)


第6讲 工具变量法

工具变量法在模拟非依从的随机化实验。

• 工具变量法的起源和基本思想

• 工具变量法的基本识别条件

• 如何选择工具变量,如何讨论工具变量的外生性条件?

• 工具变量法的选择和说服审稿人的办法

•  异质性因果效应下的工具变量法——LATE(Imbens and Angrist,1994: Angrist, Imbens and Rubin, 1996)

• 工具变量法和非依从的随机化实验(noncompliance RE)

• 基于选择的工具变量法——Heckman两步法

•  *未观测因素为基础的选择MTE——边际干预效应框架(Heckman and Vytlacil, 1999;2005)

案例:

出生季度和教育回报(Angrist and Krueger, 1991),

参军与收入(Angrist,1990)、

家庭规模和父母劳动供给(Angristand Lavy, 1998)、

美国的教育回报(Carneiro et al., 2011)、

全民儿童照护服务的收益(Cornelissen, Dustmann andSchonbrg, 2018)。


第7讲 固定效应方法

• 随机效应模型

• 固定效应模型

•  Hausman检验

• 固定效应是什么

• 组内回归(within regression)和虚拟变量回归(LSDV)

• Stata命令reg、xtreg、areg、reghdfe的关系

案例:双胞胎数据估计中国教育回报(Li, Liu and Zhang, 2012)

第8讲 经典双重差分法

双重差分法在模拟增量上的随机化实验,在线性假设下,属于固定效应模型。

• 共同/平行趋势假设(Parallel/Common Trend Assumption)、无预期假设(no anticipation assumption)、无溢出效应假设(no spillover effects assumption)、共同区间假设(overlap assumption)

• 经典DID的因果识别

• 经典DID的参数估计:回归方法、PSM-DID(Heckmanet al. 1997, 1998)、逆概率加权估计量(Abadie, 2005)、双重稳健估计量(Sant’Anna and Zhao, 2020)

• 如何在回归模型中引入不时变的协变量Xi和时变协变量Xit?

案列:

移民冲击和工资(Card, 1990)、

最低工资调整和就业(Card and Krueger, 1994)、

911事件对美国办公楼的影响(Abadie and Dermisi, 2008)、

大学扩招和大学生失业(邢春冰和李实,2011)。


第9讲 多期单一政策DID

经典DID的扩展,扩展到多期,仍然只有一个干预组和一个控制组

• 基本识别条件:平行趋势假设、无预期假设和无溢出效应假设的重新表述。

• 平行趋势假设检验和动态模型构造(事件研究法设计)

• 以个体出生年份(cohort)构成的DID,有时也称为cohort DID,并不是一种新的设计

案例:

茶叶价格和消失的女性(Qian, 2008)、

土豆和人口及城市化(Nunn and Qian, 2011)。


第10讲DID-IV设计

•  DID和IV的结合:不满足平行趋势时的新设计

• 基本识别条件、因果识别过程

•  三重差分法(DDD):一种特殊的工具变量法

•  基本识别条件、因果识别过程

案例:

印尼建校项目对教育回报的影响(Duflo, 2001)、

强制福利对劳动力市场的影响(Gruber, 1994)。



第11讲 交错DID(staggered DID)

个体是逐渐受到政策影响的,不再只有单纯的干预组和控制组两组,而是有很多的干预组和控制组,而干预组被干预的时点不同,用这样的数据估计政策影响时,早期文献仍然沿用第10讲多期单一政策时的设计方法,采用双向固定效应模型(TWFE)估计,但最新的文献发现,在交错政策时,如果存在组间异质性(Goodman-Bacon, 2021)和时间上异质性(Sun and Abraham, 2021)时,TWFE估计量存在着偏差,事件研究法存在着污染偏差(Contamination bias)。

• 基本识别条件的讨论

• TWFE估计量在估计什么(Goodman-Bacon, 2021; de Chaisemartinand D'Haultfoeuille, 2020)

Ø  Goodman-Bacon分解

• 事件研究法存在的偏差(Sun and Abraham, 2021)

• 如果正确的估计因果效应:

Ø  Callaway and Santa’Anna(2021)非参数估计量

Ø  Wooldridge(2021)回归估计量

案例:大而坏的银行:放松管制与收入分配(Beck et al., 2010; Baker et al., 2022)


第12讲 合成控制法

• 缺失值填补(Borusyak et al., 2021; Liu et al., 2021)

• 合成控制法(Abadie et al., 2010)

• 合成双重差分法(Arkhangelsky et al., 2021)

•  广义合成控制法(Xu, 2017)

案例:

加州控烟法案的效果(Abadie et al., 2010);

德国统计的经济影响(Abadie et al., 2015)



第13讲 断点回归设计

最接近于完全随机化实验的研究设计,教育学家发明(Thistlethwaite and Compbell, 1960),但作者认为价值不大,但被经济学家挖掘出来,焕发异彩(Hahn et al. 2001)。本章讨论RDD、Fuzzy RDD、Kink RDD的基本识别条件、估计方法、带宽选择方法等。

•  精确断点回归设计:局部随机化假设、连续性假设

• 模糊断点回归设计:工具变量法

• 弯折断点回归设计:导数上的断点

案例:

美国政党的在位优势(Lee,2008)、

空气污染和寿命(Chen et al., 2013;Ebenstein et al., 2017)、

学区房的价值(Black, 1999)、

户口的价值(Chen et al., 2019)。


优惠信息:

现场班老学员9折优惠;

同一单位三人以上同时报名9折优惠;

以上优惠与学生优惠价不叠加。



报名咨询:

电话:18600257362

微信:jgzjwanzi

QQ:3196394371

加微信请备注:因果推断



课程订阅

讲师介绍

赵西亮

教授

Peixun.net

基本有用的计量经济学——因果推断

请认真填写以下信息,方便为您服务
  • 姓名:
  • 电话:
  • 邮箱:
  • 备注:
  • 邀请码:
  • 您还可以选择 登录 或者 注册 更方便您管理课程。

Peixun.net

您关于:

基本有用的计量经济学——因果推断

的报名信息已经提交成功。

去购物车结算
您可以选择 登录 或者 注册 更方便您管理课程。
回头再说

邮件已发送!

已成功发送邮件到您注册的邮箱 请前往查询并点击链接重置密码

有待解答的问题

3 名学员对您的课程提问,需要您作出回答。 现在就去