『现场』机器学习案例实践Python--(现场/远程)
上课信息
上课时间: 2017-03-10——2017-03-14 09:30-17:30
上课地点: 北京海淀区厂洼街丹龙大厦B3018
1. 机器学习要解决的问题(往期公开课60分钟试听)立即播放
2. 有监督无监督问题
3. 机器学习能做什么
4. 感知器-线性分类
5. 线性回归原理,推导
6. 实例:预测泰坦尼克船员能否获救
7. K近邻算法原理
8. K近邻算法代码实现
9. 实例:使用K近邻算法测试约会对象
1. 逻辑回归算法原理,推导
2. 逻辑回归代码实现
3. 多分类问题解决方案
4. 一对一分类,一对多分类
5. 决策树算法模型
6. 熵原理,信息增益
7. 决策树构建
8. 决策树代码实现
9. 贝叶斯算法原理
10. 贝叶斯代码实现
11. 实例1:使用贝叶斯分类器打造拼写检查器
12. 实例2:垃圾邮件分类任务
1. Adaboosting算法原理
2. Boosting机制,优势分析
3. 自适应增强算法代码实现
4. 实例:使用集成算法改进泰坦尼克号预测
5. 线性支持向量机算法原理推导
6. 支持向量机核变换推导
7. SMO求解支持向量机
8. SMO算法代码实现
9. 随机森林算法原理
10. 使用随机森林衡量选择特征标准
11. 实例:使用随机森林改进泰坦尼克获救预测
12. 聚类算法综述
13. K-MEANS与DBSCAN算法讲解
1. HTTP日志流量数据分析
2. 特征提取
3. 预处理,归一化
4. 分类解决方案
5. 聚类解决方案
6. 二分图,转移矩阵原理
内容不能少于5个字符!
唐宇迪
『远程』大数据分析周末班
您还可以选择 登录 或者 注册 更方便您管理课程。